13 research outputs found

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    The governance of justice and internal security in Scotland: Between the Scottish independence referendum and British decisions on the EU

    Get PDF
    This article examines how the governance of justice and internal security in Scotland could be affected by the outcome of the Scottish independence referendum in September 2014. The article argues that it is currently impossible to equate a specific result in the referendum with a given outcome for the governance of justice and internal security in Scotland. This is because of the complexities of the current arrangements in that policy area and the existence of several changes that presently affect them and are outside the control of the government and of the people of Scotland. This article also identifies an important paradox. In the policy domain of justice and internal security, a ‘no’ vote could, in a specific set of circumstances, actually lead to more changes than a victory of the ‘yes’ camp

    High accuracy 235U(n,f) data in the resonance energy region

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. C. Paradela, et al, ‘High accuracy 235U(n,f) data in the resonance energy region’, EPJ Web of Conferences, Vol. 111, 2016, WONDER-2015 – 4TH International Workshop on Nuclear Data Evaluation for Reactor applications, 5 – 8 October 2015, Aix-en-Provence, France. Article available at https://www.epj-conferences.org/articles/epjconf/pdf/2016/06/epjconf_wonder2016_02003.pdf © Owned by the authors, published by EDP Sciences, 2016.The 235U neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n-TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Comparison with the ENDF/B-VII evaluation and the IAEA reference file from 100 eV to 10 keV are provided

    Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    Get PDF
    Neutron-induced fission cross sections of 238^{238}U and 235^{235}U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection efficiency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235^{235}U(n,f) and 238^{238}U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data

    Measurement of the neutron-induced fission cross-section of Am at the time-of-flight facility n TOF

    Get PDF
    Abstract. The neutron-induced fission cross-section of 241 Am has been measured relative to the standard fission cross-section of 235 U between 0.5 and 20 MeV. The experiment was performed at the CERN n TOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the α-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the n TOF facility enabled us to obtain uncertainties of ≈ 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up

    Measurement and analysis of the Am 243 neutron capture cross section at the n-TOF facility at CERN

    Get PDF
    Background: The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Improvement of the Am243(n,γ) cross section uncertainty. Method: The Am243(n,γ) cross section has been measured at the n-TOF facility at CERN with a BaF2 total absorption calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The Am243(n,γ) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature have been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the Am243(n,γ) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.Peer reviewe
    corecore